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In this paper, we are concerned with the effect of fluid elasticity and shear-thinning
viscosity on the chaotic mixing of the flow between two eccentric, alternately rotating
cylinders. We employ the well-developed h-p finite element method to achieve a high
accuracy and efficiency in calculating steady solutions, and a full unsteady algorithm
for creeping viscoelastic flows to study the transient process in this periodic viscoelastic
flow. Since the distribution of periodic points of the viscoelastic flow is not symmetric,
we have developed a domain-search algorithm based on Newton iteration for locating
the periodic points. With the piecewise-steady approximation, our computation for
the upper-convected Maxwell fluid predicts no noticeable changes of the advected
coverage of a passive tracer from Newtonian flow, with elasticity levels up to a
Deborah number of 1.0. The stretching of the fluid elements, quantified by the
geometrical mean of the spatial distribution, remains exponential up to a Deborah
number of 6.0, with only slight changes from Newtonian flow. On the other hand,
the shear-thinning viscosity, modelled by the Carreau equation, has a large impact on
both the advection of a passive tracer and the mean stretching of the fluid elements.
The creeping, unsteady computations show that the transient period of the velocity is
much shorter than the transient period of the stress, and from a pragmatic point of
view, this transient process caused by stress relaxation due to sudden switches of the
cylinder rotation can be neglected for predicting the advective mixing in this time-
periodic flow. The periodic points found up to second order and their eigenvalues
are indeed very informative in understanding the chaotic mixing patterns and the
qualitative changes of the mean stretching of the fluid elements. The comparison
between our computations and those of Niederkorn & Ottino (1993) reveals the
importance of reducing the discretization error in the computation of chaotic mixing.
The causes of the discrepancy between our prediction of the tracer advection and
Niederkorn & Ottino’s (1993) experiment are discussed, in which the influence of
the shear-thinning first normal stress difference is carefully examined. The discussion
leads to questions on whether small elasticity of the fluid has a large effect on the
chaotic mixing in this periodic flow.

1. Introduction
Mixing of non-Newtonian fluids is common in a variety of industrial applications

such as the processing of polymers, food and biochemical materials. In recent years
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there have been considerable advances in understanding the mechanism of advective
mixing of viscous fluids in the Stokes flow regime. It is now well established that in
steady two-dimensional flows, the mixing is regular while in unsteady two-dimensional
flows there is a good chance that the mixing is chaotic in some regions of the flow
(Aref & Balachandar 1986; Ottino 1989). From a kinematic point of view, advective
mixing, not including diffusion, is nothing more than stretching and folding of the
fluid lines and surfaces; in regular regions the stretching rate is linear for a long
time, while in chaotic regions it increases exponentially. Therefore one of the primary
means of increasing mixing efficiency is to enhance and control the chaotic region in
the flow, and it is obviously of vital importance to understand the mechanism and to
estimate the effect of the fluid rheology on the character of chaotic advection.

There are a few model mixers amenable to detailed investigations both by ex-
perimentation and computation; one of them is the eccentric helical annular mixer
(EHAM). This mixer has a continuous input–output with no sharp edges – an impor-
tant advantage that is desirable for some ‘delicate’ fluids such as bio-materials (see
Kusch & Ottino 1992). The two-dimensional problem closely related to the EHAM
mixer is the chaotic mixing between eccentric cylinders which has been extensively
analysed in the Stokes regime (Chaiken et al. 1986; Aref & Balachandar 1986; Swan-
son & Ottino 1990; Muzzio, Swanson & Ottino 1991). The smooth boundaries and
the existence of analytical solutions (e.g. Wannier 1950) make this flow an ideal test
case for numerical simulations. For Newtonian fluid, an excellent agreement between
the experimentally observed and the theoretically predicted mixing patterns has been
demonstrated (Swanson & Ottino 1990).

The experimental and computational investigations of Niederkorn & Ottino (1993,
1994) have addressed two non-Newtonian properties that influence chaotic mixing in
the eccentric annulus, namely fluid elasticity and shear-thinning of the fluid viscosity.
They found that relatively small deviations of the velocity field from the Newto-
nian kinematics can have a large impact on the chaotically advected patterns. It is
noteworthy that in their study on viscoelastic flow with low levels of elasticity, some as-
tonishingly perfect matches of the tracer coverage between the experiment with Boger
fluids and the computation using the upper-convected Maxwell (UCM) constitutive
equation have been observed, although the discretization error of the velocity field in
their calculation is rather large. Chaotic advection in the eccentric cylindrical geometry
is accomplished by alternately rotating the inner and outer cylinders. A square-wave
form of the modulation was adopted in Niederkorn & Ottino’s investigations. The key
assumption in their computation is to approximate the unsteady flow by a sequence
of piecewise-steady flows. The piecewise-steady assumption is valid for Newtonian
creeping flows where the fluid inertia is negligible. However, in the case of viscoelastic
flows, because of the timescales in the constitutive equations (the stress relaxation
process), the transient stress field may have an important influence on the velocity
field, especially when the rotation changes suddenly from one cylinder to another.

Based on a perturbation solution for UCM fluid with low levels of elasticity, Kumar
& Homsy (1996) applied the geometric theory of Kaper & Wiggins (1993) to analyse
the effect of viscoelasticity on the area over which chaotic advection occurs; with slow,
continuous modulations of the cylinder rotations, their quasi-steady approximation is
more justified. They indicated that the mechanism responsible for the area changes
is a modified pressure gradient in the angular direction, which appears due to the
first normal stress differences caused by shearing. However, the magnitude of the
correction terms in their perturbation solution is rather large, compared to the base
solution.
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Numerical simulations are inherently subject to approximation errors. A clear error
analysis of the validity of the numerical simulation of advective mixing has been
given in the pioneering investigation of Souvaliotis, Jana & Ottino (1995). The study
indicates that the errors, defined as the distance between the exact and the calculated
fluid particle locations, are mainly composed of the discretization errors of the velocity
field from finite element or finite difference solutions, and the time integration errors.
In general, these errors behave like differential material lines, and the cumulative
or global errors, at any given time, are the sum of all the previously introduced
errors as they have grown within the flow field. One important fact found is that the
errors tend to align with the streamlines in regular regions and with the manifolds of
the hyperbolic points in chaotic regions. As a consequence, even though exact and
calculated trajectories diverge exponentially fast in the chaotic regions, the overall
mixing patterns (e.g. the dye striations, the type of low-order periodic points, etc.) are
reproduced at least qualitatively. This suggests that the accuracy requirement for the
velocity field is not as stringent as the exponential stretching of chaotic mixing seems
to suggest.

Our objective in the present study is to develop accurate and efficient numerical
methods to investigate the impact of the fluid elasticity, the shear-rate-dependent
viscosity and the transient process on the mixing characteristics in the time-periodic
flow between eccentric cylinders. Especially, in view of the error estimations reported
in Niederkorn & Ottino’s work, we believe it is necessary to reduce the discretization
error of the velocity field before proceeding confidently with analysing the advective
mixing. To keep the investigation reasonably focused, the same geometric configura-
tion and operating conditions as Niederkorn & Ottino’s investigations are adopted;
only the case of counter-rotating cylinders is considered. Shear-rate-dependent vis-
cosity of the fluid is modelled by the Carreau equation and the field equations are
solved by the mixed finite element method. Viscoelasticity of the fluid is modelled
by the UCM and Oldroyd-B constitutive equations. A Galerkin/least-square finite
element method, developed by the authors, is employed to solve the steady field
equations of the viscoelastic flows. Accuracy and convergence of the algorithms are
demonstrated by increasing the finite element interpolation orders (the so-called p-
extension), checking the results with the analytic solutions for Newtonian flow, and
comparing with accurate numerical solutions for viscoelastic flow in the literature. A
full unsteady finite element algorithm for creeping, viscoelastic flows is developed and
used to examine the effects of the transient process on this time-periodic flows.

Our approach in analysing the advective chaotic mixing includes plotting the
coverage of a passive tracer, evaluating the mean stretching of the fluid elements,
and searching for and characterizing the periodic points. Since the distribution of
the periodic points is not symmetric in the viscoelastic flow, a new domain-search
algorithm for locating the periodic points is proposed and verified. Finally, we discuss
the causes for the discrepancy between our prediction of the passive-tracer coverage
and the experiment of Niederkorn & Ottino (1993). In particular, we question the
conclusion that a small amount of elasticity of the fluid has a large effect on the
chaotic mixing in the flow between eccentric cylinders.

2. Model mixing problem
The flow domain is confined between two eccentric cylinders with parallel axes

displaced by a distance e. The radii of the inner and outer cylinders are Ri and Ro,
respectively. The flow geometry is completely specified by a dimensionless gap µ and
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Figure 1. Geometric definitions of the problem with Ri = 1.0, R0 = 3.0 and e = 0.9;
µ = 2.0, ε = 0.45.

a dimensionless eccentricity ε which are defined as

µ =
Ro − Ri
Ri

, (2.1)

ε =
e

Ro − Ri . (2.2)

Figure 1 sketches the typical geometry for µ = 2.0 and ε = 0.45 used in the
present study; this also has been used in the investigations of Swanson & Ottino
(1990), and Niederkorn & Ottino (1993, 1994). Chaotic advection can be created by
alternately rotating the inner and outer cylinders with the angular velocities ωi and
ωo, respectively. In addition, at any one time, only one cylinder is allowed to rotate
with a constant angular velocity and the change from one cylinder to another rotating
is instantaneous. The movement of the boundaries is thus prescribed by a symmetric,
square-wave form:

ωi(t) =


ωi, 0 6 t 6 T/4

0, T/4 6 t 6 3T/4

ωi, 3T/4 6 t 6 T ,

ωo(t) =


0, 0 6 t 6 T/4

ωo, T/4 6 t 6 3T/4

0, 3T/4 6 t 6 T ,

that is, a period T is composed of rotation of the inner cylinder with a constant
ωi for T/4, followed by rotation of the outer cylinder with a constant ωo for T/2
and concluding with rotation of the inner cylinder with the same ωi for T/4. The
ratio of the angular velocities |ωi/ωo| is set equal to the ratio of the radii, thus the
linear speed is the same for both cylinders. In this investigation we only consider the
counter-rotating modulation, hence ωi/ωo = −3.0, corresponding to Vi = −1.0 and
Vo = 1.0. Given ωi/ωo, a particular time-periodic flow is characterized by the total
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Figure 2. Finite element mesh used for the case of µ = 2.0, ε = 0.45.

angular displacement of the outer cylinder in a period:

θ =

∫ T

0

ωo dt. (2.3)

3. Numerical methods
For the eccentric annulus geometry, the bipolar coordinate system is preferred

because of its orthogonality and its ability to fit the boundaries to the coordinate
lines. The transformation from the rectangular coordinates (x, y) to the bipolar
coordinate system (ξ, φ) is defined as

x =
a sinh ξ

cosh ξ + cosφ
, y =

a sin ξ

cosh ξ + cosφ
,

where a is a geometric parameter based on the eccentricity and the radii,

a =
1

2e

√
(R2

i + R2
o − e2)2 − 4R2

i R
2
o .

The finite element mesh used in this study for the case µ = 2.0, ε = 0.45 is shown in
figure 2. It consists of 20 radial elements and 60 azimuthal elements. Note that, due to
the limitation of the graphics tool used, each element is plotted as four sub-elements.

The numerical simulation of viscoelastic flows still represents a challenging task in
terms of accuracy, stability, convergence and demand for computing resources. In this
study we use the h-p-type finite element method to obtain high accuracy and efficiency.
It is well-known that high-order finite element methods (namely p-refinement) have
an exponential convergence rate for smooth problems and a local combination of the
p-refinement with the h-refinement (i.e. mesh refinement) provides a further efficiency
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and flexibility (Talwar & Khomami 1992; Fan & Crochet 1995; Fan 1997; Warichet
& Legat 1997). The mesh shown in figure 2 may look rather coarse, but the solutions
reported later will demonstrate its high accuracy and good convergence property
under the p-extension process. For the basis functions of the finite element spaces, we
adopted a set of hierarchic shape functions proposed by Szabo & Babuska (1991),
which are based on Legendre polynomials. In our computations, the velocity and the
extra stress are approximated with the same order of polynomials while the pressure
is kept one order less than the velocity in order to meet the LBB compatibility
condition (see Huilgol & Phan-Thien 1997), the calculation of the lowest order is
with the velocity approximated by biquadratic polynomials.

3.1. FE methods for steady flows of Newtonian and shear-thinning fluids

The continuity and momentum equations for the isothermal, creeping, steady flows
of incompressible fluids are

∇ · u = 0, (3.1)

−∇p+ ∇ · τ = 0, (3.2)

where u is the velocity, p the pressure and τ the extra-stress tensor. For Newtonian
fluids,

τ = η(∇u+ ∇uT ), (3.3)

where η is a constant viscosity for isothermal flows and the superscript T denotes the
transpose operation.

The model used in this study is the inelastic Carreau model with a zero infinite-
shear-rate viscosity (Bird, Armstrong & Hassager 1987):

η = η0[1 + (λcγ̇)
2](n−1)/2, (3.4)

which includes a characteristic viscosity η0, a timescale λc and a power-law index n.
This model accounts for the low-shear-rate Newtonian plateau and transition into
the power-law region (shear-thinning property with n < 1), which are exhibited by

most fluids with long chain microstructures. Here, we define γ̇ =
√

2 trD2 where
D = (∇u+ ∇uT )/2 is the strain-rate tensor. The transition from the Newtonian
plateau to the power-law region occurs when λcγ̇ is O(1).

Throughout this study, we use Ri as a characteristic length, and the linear velocity of
either cylinder as a characteristic velocity V (note that ωi/ωo = Ro/Ri is prescribed).
The extra stress and pressure are scaled by ηV/Ri, or η0V/Ri in the case of shear-
thinning fluids. The dimensionless constitutive equation for the inelestic Carreau
model is

τ = [1 + (Crγ̇)
2](n−1)/2(∇u+ ∇uT ), (3.5)

where Cr = λcV/Ri, called the Carreau number.
Let Ω be the flow domain and ∂Ω its boundary. On ∂Ω, the partial boundaries

∂Ωu, ∂ΩN are identified with boundary conditions for the velocity u and the traction
force t, respectively. The variational formulation for Carreau fluids can be stated as:
Find the set (u, p) ∈ V × P such that ∀Φu ∈ V, ∀Φp ∈ P,∫

Ω

([1 + (Crγ̇)
2](n−1)/2(∇u+ ∇uT ) :∇Φu − p∇ · Φu) dΩ =

∫
∂ΩN

t · Φu d∂Ω, (3.6)

∫
Ω

(∇ · u)Φp dΩ = 0, (3.7)



Viscoelastic effects in chaotic mixing 203

whereV,P denote the function spaces defined on Ω and spanned by the basis functions
Φu, Φp, for the velocity and pressure, respectively.
This is a straightforward adaptation of the mixed finite element method for the
incompressible Navier–Stokes equations where Cr = 0 or n = 1. After discretization,
the nonlinear set of equations for the unknown variables u, p is solved by the Newton
iteration scheme. It was found that, generally, after three iterations the maximum
variation max{δu, δp} is less than 10−4, indicating that this is a very high efficiency
algorithm.

3.2. Finite element methods for steady flows of viscoelastic fluids

The constitutive equation for viscoelastic fluids considered in this study is the Oldroyd-
B model where the extra stress consists of two parts: τ s is from the Newtonian
solvent, and τ p from the polymer which obeys the upper-convected Maxwell (UCM)
constitutive equation. The non-dimensional forms of the equations are

τ s = β(∇u+ ∇uT ), (3.8)

τ p + Deτ p(1) = (1− β)(∇u+ ∇uT ), (3.9)

with the Deborah number defined as

De = λV/Ri, (3.10)

and the relative Newtonian viscosity as

β =
ηs

ηs + ηp
, (3.11)

where λ is the fluid relaxation time and ηs, ηp the viscosity contributions from the
solvent and polymer, respectively. The subscript (1) stands for the upper-convected
derivative defined by

τ (1) = u · ∇τ − τ · ∇u− ∇uT ·τ . (3.12)

If β = 0 then τ = τp and the model reduces to the UCM model.
In the field of finite element methods for differential constitutive equations, it

is now a common practice to use the Galerkin weighted residual method for the
momentum and continuity equations, and the streamline upwind Petrov–Galerkin
(SUPG) technique (Brooks & Hughes 1982) for the constitutive equation. The latter
is due to the hyperbolic character with respect to the stress variables. However, in the
case of a small contribution of the solvent stress, β � 1, or the UCM model, β = 0, the
algorithms are often confronted with instability or the loss of convergence with respect
to the mesh refinement at a moderate level of fluid elasticity. One explanation is that
the momentum equation, which, together with the incompressibility constraint, forms
a saddle-point problem, loses its explicit elliptic character for the velocity variable in
such cases. This argument has led to several stable and convergent algorithms such
as the explicitly elliptic momentum equation formulation (EEME, King et al. 1988),
the elastic-viscous stress split formulation (EVSS, Rajagopalan, Armstrong & Brown
1990) and the adaptive viscoelastic stress splitting formulation (AVSS, Sun, Phan-
Thien & Tanner 1996). Another approach is to introduce a least-square perturbation
to stabilize the algorithm. To the usual Galerkin formulation, the Galerkin/least-
square methods (Hughes, Franca & Hublert 1989; Franca & Frey 1992; Behr, Franca
& Tezduyar 1993) add some terms that are the functions of the residuals of the
Euler–Lagrange equations. The added perturbation terms are designed to enhance
the stability of the original Galerkin method while preserving the consistency with the
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exact solution. In the field of viscoelastic flows, the Galerkin/least-square methods
include the discrete EVSS (DEVSS) method proposed by Guénette & Fortin (1995)
and the MIX1 method proposed by the authors. The MIX1 method has been
demonstrated to be superior to the DEVSS method in the sense that it does not need
to solve for the strain-rate tensor while it has the same level of accuracy and stability
as the DEVSS method; the reader is referred to Fan, Tanner & Phan-Thien (1999)
for details.

The variational formulation, called MIX1, for the steady viscoelastic flow is stated
as follows:
Find the set (τ, u, p) ∈ T×V×P such that ∀Φu ∈ V, ∀Φp ∈ P, ∀Φτ ∈ T,∫
Ω

(β(∇u+ ∇uT ) + τ p) :∇Φu − p∇ · Φu) dΩ +

∫
Ω

αc(∇ · u)(∇ · Φu) dΩ =

∫
∂ΩN

t · Φu d∂Ω,

(3.13)∫
Ω

(∇ · u)Φp dΩ = 0, (3.14)∫
Ω

(τ p + Deτ p(1) − (1− β)(∇u+ ∇uT )) : (Φτ + ku · ∇Φτ) dΩ = 0, (3.15)

where T, V, P denote the function spaces defined on Ω and spanned by the basis
functions Φτ, Φu, Φp, for the extra stress, velocity and pressure, respectively.

In equation (3.13) the term containing αc is a least-square form of the residual
of the continuity equation. This added perturbation term considerably enhances the
stability and keeps the convergence property of the original Galerkin algorithm. In
creeping viscoelastic flows, the numerical experiments of Fan et al. (1999) indicated
that the constant αc has a good stabilization and this performance is insensitive over a
relatively large range of αc (dimensionless values ranging from 1 to 30). In the present
study we take αc = 1. Equation (3.15) is the SUPG formulation for the constitutive
equation in which we choose the parameter k = h/vm where h is the element size
along the local flow direction and vm is a mean value of the velocity magnitude over
the element. This choice comes from the investigation of Fan & Crochet (1995); it
guarantees that the upwind term approaches zero together with the velocity on the
stationary walls.

After discretization, the nonlinear set of equations for the unknown variables
τ p, u, p is solved by the Newton iteration scheme. The calculations were carried
out by increasing the Deborah number De in steps of 0.5 from zero (Newtonian
flow) to a designated value. Generally, after five iterations the maximum variation
max{δτ p, δu, δp} is less than 10−4, indicative of an excellent convergence behaviour.

3.3. Finite element methods for creeping unsteady flows of viscoelastic fluids

Let us consider the basic governing equations. If the fluid inertia is negligible, the
only change from steady to unsteady flows takes place in the constitutive equation
where the upper-convected derivative contains an additional time derivative:

τ p(1) =
∂τ p
∂t

+ u · ∇τ p−τ p·∇u− ∇uT ·τ p. (3.16)

This implies that a transient process of the velocity is determined by the transient
process of the elastic stress, and also by the transient movement of the boundaries. The
local time derivative enable us to devise a simple one-step time-marching algorithm
for unsteady viscoelastic flows. This algorithm is semi-implicit and has an accuracy
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of O(δt) in the time dimension. Letting the superscript n denote the solution at time
nδt, and n+ 1 the solution at time (n+ 1)δt, then the algorithm for creeping unsteady
viscoelastic flows can be stated as follows.
Given the set (τn, un, pn) ∈ T×V×P, find the set (τn+1, un+1, pn+1) ∈ T×V×P such
that ∀Φu ∈ V, ∀Φp ∈ P, ∀Φτ ∈ T,∫

Ω

((β(∇un+1 + ∇uT (n+1)) + τ np) :∇Φu − pn+1∇ · Φu) dΩ

+

∫
Ω

αc(∇ · un+1)(∇ · Φu) dΩ =

∫
∂ΩN

tn·Φu d∂Ω (3.17)

∫
Ω

(∇ · un+1)Φp dΩ = 0 (3.18)

∫
Ω

[
τ n+1
p + De

τ n+1
p − τ np
δt

+ De([u · ∇τ p]− [τ p·∇u]− [∇u · τ p])∗

−(1− β)(∇un + ∇uTn)
]

: (Φτ + kun·∇Φτ) dΩ = 0, (3.19)

where T, V, P denote the function spaces defined on Ω and spanned by the basis
functions Φτ, Φu, Φp, for the extra stress, velocity and pressure, respectively.
At time (n+1)δt, the computation is decoupled into the velocity–pressure computation,
equations (3.17) and (3.18), and the extra-stress computation, equation (3.19). In two-
dimensional flows, the stress tensor τ p contains four components τ p,ij with τ p,ij = τ p,ji,
i, j = 1, 2; thus (3.19) expands to three coupled equations with respect to the advection
of each components; in the terms denoted by the superscript ∗ in (3.19), the component
τ p,ij is taken at the time (n+1)δt while the other components appearing in this equation
are taken at the time nδt.

This decoupled, implicit–explicit algorithm is designed as a compromise between
efficiency and stability requirements in the excessively time-consuming computations
of unsteady viscoelastic flows. Since the stress τ p is explicit in (3.17), the velocity–
pressure computation becomes a linear Stokes problem and the coefficients of the finite
element equations are independent of the stress and time; thus the LU matrix splitting
of the Gauss elimination can be done only once at the start of the computation and
stored for back-substitution of later time-marching. The efficiency of computation is
thereby greatly improved. However, also due to this feature, the present algorithm can
only be applied to fluids with a stress contribution of a Newtonian solvent such as
the Oldroyd-B model; the LU matrix splitting corresponding to the term containing
αc was found to be singular, so it is necessary that β > 0 in (3.17) to (3.19). Note
that if we introduce a stress splitting scheme such as the DEVSS method (Guénette
& Fortin 1995), this limitation can be removed at the additional expense of solving
for the strain-rate variables.

3.4. Time integration of trajectories

The trajectory or pathline of a fluid particle can be computed by integrating the
equation of motion,

dx

dt
= u(x, t); xt=0 = X , (3.20)

provided that the velocity field u is given. The time dependence of u is the source of
chaotic behaviour in the system, and this dependence is periodic and discontinuous
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in the current situation. In the piecewise-steady computations, two steady velocity
fields corresponding to the rotation of each cylinder are first computed; through the
basis functions of the finite element spaces, the spatial distributions of u are obtained.
The second-order Runge–Kutta method is used to integrate (3.20). To determine the
appropriate time step, consecutive tests of integrating one particle for one period
were performed; at each test the time step was halved and the number of steps was
doubled, until the final position of the particle was within the error of 10−4 in the
(x, y) coordinates.

In the full unsteady computations, the field equation calculation and the particle
trajectory integration must be implemented simultaneously. To save CPU time, the
time step of the field equations is taken as five times the time step of the trajectory
integration, in which u(x, t) is linearly interpolated between the two time-discrete
velocity fields. In our computations, typically, 600 time steps of the field equations
were employed for the outer cylinder to cover θ = 3π/2 and 800 time steps for θ = 2π,
corresponding to, respectively, 6000 and 8000 time steps of the trajectory integration
for one period. This algorithm is found to be reasonably accurate and stable for the
current unsteady viscoelastic flows.

A typical experiment is performed by injecting a dyed blob of fluid and advecting
the fluid by alternately rotating the cylinders. In our numerical simulation, initially the
tracer is represented by an element in the bipolar frame and consists of 10 000 fluid
particles; the initial location is in the middle of the smaller gap. This sample number
is far from enough to track material surfaces of the tracer due to the exponential
rate of the stretching in the flow (Franjione & Ottino 1987). Fortunately, as the study
of Muzzio et al. (1991) indicated, the mixing pattern has a considerable degree of
self-similarity, and folds present in early periods remain throughout the experiment
as details are added on a finer and finer scale. Therefore a faithful picture of the
dye structure after Np periods can be produced by plotting all of the tracer positions
corresponding to the previous periods.

3.5. Lineal stretching of fluid elements

Advective mixing is a result of stretching and folding of fluid elements; therefore
the amount of lineal stretching can be used to quantify the efficiency of mixing.
To determine the stretching, consider an infinitesimal fluid element attached to an
infinitesimal vector of arbitrary initial orientation; the evolution of the vector can be
computed if one knows the deformation gradient tensor:

dx(t) = F (t) · dX , (3.21)

where dX is the initial vector, dx the deformed vector and F the deformation gradient
tensor. This requires solving the evolution equation of F ,

dF

dt
= (∇u)T · F , Ft=0 = I , (3.22)

where I is the identity tensor. Since the fluid element is convected by the flow, the
velocity gradient is time dependent even in steady flows; therefore the equation of
motion (3.20) for the fluid element must be solved simultaneously to get ∇u. The
lineal stretching is defined as

λ =
|dx|
|dX | . (3.23)
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One characteristic of chaotic mixing is the exponential growth of the stretching with
time, hence a timescale Tc could be found through

〈λ〉 = exp

(
t

Tc

)
, (3.24)

where 〈λ〉 is a geometric mean of λ distributed over the whole flow domain.
In our implementation, initially a set of fluid particles was uniformly distributed

within the (ξ, θ) domain, with each element containing four or nine fluid particles;
then (3.20) and (3.22) were solved by the second-order Runge–Kutta method; the
arithmetic mean over eight uniformly distributed orientations of the initial vector dX
and the geometric mean of λ over all the fluid samples were calculated at the end
of each period; the effect on ln(〈λ〉) of further increasing the number of orientations
was found negligible.

3.6. Search for periodic points

The character of advective mixing produced by a time-periodic flow is determined by
the location and character of the periodic points. The flow can be considered as a
mapping M, in which each fluid particle gets mapped to a new position after each
period T :

X i+1 = MT (X i). (3.25)

A periodic point of n order is defined as

X n = X 0 and X i<n 6= X 0. (3.26)

Periodic points are classified as either elliptic or hyperbolic depending on the nature of
the deformation surrounding the material point, and this turns out to be determined
by the eigenvalues of the linearized mapping in the neighbourhood of the point (see
Ottino 1989).

Searching for the periodic points in the flow domain is not a simple task because,
generally, the mapping cannot be analytically expressed and has to be obtained
through the time integration of equation (3.20). For the creeping Newtonian and
viscous shear-thinning flows, the velocity field is symmetric about the line through
the two centres of the cylinders provided that the wave form of the cylinder rotation
is symmetric. This symmetry is fully exploited by the investigations of Swanson &
Ottino (1990) and Niederkorn & Ottino (1994) in which the task of two-dimensional
searching can be reduced to a one-dimensional search on the line of symmetry.
However, due to the fluid’s memory, the symmetric property of the velocity field
is lost in the corresponding viscoelastic flows. Here we propose an efficient two-
dimensional searching algorithm which is an extension of the Newton iteration
method for nonlinear equations.

Searching for the periodic points of n order is equivalent to finding the solution of
the following equations:

x(X,Y )−X = 0, y(X,Y )− Y = 0, (3.27)

where (X,Y ) is the initial position of a fluid particle and (x, y) is the position of
the particle after n periods. This set of equations can be solved by Newton iteration
in which the required differentials can be approximated by the finite differences.
To avoid missing the periodic points, there should be a reasonably large number
of initial particles distributed uniformly in the flow domain; most of them will
diverge during the iteration, and only those which are sufficiently near a periodic
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Vi Vo Interpolation order NV r.m.s error Maximum error

−1 0 P2 10619 3.7× 10−7 1.0× 10−6

−1 0 P3 26159 1.0× 10−7 3.3× 10−7

−1 0 P4 48899 3.5× 10−11 1.9× 10−10

0 1 P2 10619 6.4× 10−7 1.8× 10−6

0 1 P3 26159 1.8× 10−7 4.6× 10−7

0 1 P4 48899 5.7× 10−11 4.0× 10−10

Table 1. Convergence with the interpolation orders. NV is the number of variables solved.

point will converge. In our implementation, both the initial and final positions were
expressed in the bipolar coordinates (ξ, θ); the approximate differentials were taken
as δξ = δθ = 10−8. During the iteration process, a threshold value was set to exclude
those points considered to be divergent. At the beginning, each element contained
16 points, and a total of 19 200 points participated in the mapping-iteration process;
the number of the points was greatly reduced after each iteration due to the filtering
procedure. With this scheme, we find that all the elliptic periodic points and most
of the hyperbolic periodic points can be captured; occasionally, a few high-order
hyperbolic periodic points could be missed, due to the large deformation near these
hyperbolic points and also to the larger accumulating numerical errors in the higher-
order mappings.

4. Solutions of steady flows
Chaotic advection provides a stringent test for numerically computed velocity fields:

small errors in the velocity field will be swiftly magnified by the chaotic dynamics.
Therefore it is necessary to estimate the error of the steady velocity fields. We define
the maximum error and the root-mean-square (r.m.s) error as

maximum error =
n

max
1

√
(uanalytic − ufe)2,

r.m.s. =

√√√√1

n

n∑
1

(uanalytic − ufe)2,

where n is the number of nodes in the interior of the flow, uanalytic is the analytical solu-
tion of Wannier (1950), and ufe is the finite element solution. It should be emphasized
that, in the case of Newtonian flow r.m.s. indicates the accuracy of a numerical solution,
while in the case of viscoelastic or shear-thinning flows it can be used to evaluate the
velocity deviations from the Newtonian flow. Table 1 lists these two kinds of errors in
our p-extension computations. The convergence with increasing interpolation orders
is obvious and the convergence rate in terms of the number of variables solved is
roughly exponential. In calculations P2 and P3 the interpolation orders were uniform
throughout the whole mesh while in calculation P4 the interpolation of order –4 was
only applied to four layers of the elements adjacent to the inner and outer cylinders.

In our computations of the steady flow with the UCM model, there seems no upper
limit of the Deborah number when the inner cylinder is set rotating; however, the
convergence of iteration was limited by De = 6.5 for the case of outer cylinder rotation.
This is due to the very steep stress boundary layers developed near the inner cylinder



Viscoelastic effects in chaotic mixing 209

(a) (b)

5.9

17.8

29.7

41.6

53.4

65.3

shh

4.0

12.0

19.9

27.9

35.9

43.9

shh

–1.8

–1.5

–1.1

–0.7

–0.4

–0.0

snh

–2.7

–2.2

–1.8

–1.3

–0.8

–0.3

snh

Figure 3. Contours of the stress components τξθ , τθθ at De = 6.0; (a) the case of inner cylinder
rotation, (b) the case of outer cylinder rotation.

Vi Vo De r.m.s. deviation

−1 0 0.2 2.2× 10−4

−1 0 1.0 3.0× 10−3

−1 0 6.0 1.1× 10−2

0 1 0.2 6.8× 10−4

0 1 1.0 1.3× 10−2

0 1 6.0 1.4× 10−1

Table 2. R.m.s. velocity deviations of the UCM fluids from the Newtonian flow.

in the case of high De, which are difficult to resolve by the finite element mesh used.
Figure 3 exhibits contours of the normal and shear stress components for the flows
De = 6.0. In the literature, extensive numerical simulations of the viscoelastic flows
between eccentric cylinders with small gap and low eccentricity have been reported.
To validate our viscoelastic algorithm, we carried out calculations for UCM fluid in
the case µ = 0.1, ε = 0.1 and compared the results with that of Beris, Armstrong
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Figure 4. Results of the low-eccentricity case, µ = 0.1, ε = 0.1; the stress profile for τθθ along the
section θ = 3π/2 for De = 10 in the cylindrical coordinate system centred at the inner cylinder.

& Brown (1987). They used a spectral finite element method (SFEM) in which the
field variables were expanded by Fourier functions in the azimuthal direction and by
the conventional finite element basis functions in the radial direction. This particular
combination enabled them to use 200 elements in the radial direction. To date, the
SFEM solution is still the most accurate one for this problem in the literature. Figure 4
plots the profiles of the normal stress τθθ at De = 10; our calculations with only 12
radial elements exhibit an excellent p-convergence property and a good agreement
with the SFEM solution. Note that this stress profile has also been confirmed by
the computation of King et al. (1988) and by our previous computation using a
cylindrical coordinate system (Fan et al. 1999).

To examine the impact of fluid elasticity on the steady velocity field, we choose the
Deborah numbers of 0.2, 1.0, and 6.0 with the UCM model. Due to the difference
in scaling, our case De = 0.2 is equivalent to the flow with Weissenberg number
We = 0.1 studied by Niederkorn & Ottino (1993). Table 2 shows the r.m.s. velocity
deviations of the UCM fluids from the analytical solution of the Newtonian fluid.
For the shear-thinning fluids, we chose three pairs of the parameters in the Carreau
model: Cr = 10 and n = 0.9, Cr = 4 and n = 0.5, Cr = 10 and n = 0.3. They span
fluids having from weak to strong shear thinning. Table 3 shows the r.m.s. velocity
deviations of the Carreau fluids from the analytical solution of the Newtonian fluid.
The results in tables 2 and 3 indicate that the velocity deviation caused by fluid
elasticity is much smaller than that caused by shear-thinning viscosity. It is worth
mentioning that Niederkorn & Ottino’s computations predict much larger velocity
deviations for the UCM fluid; they treated the Newtonian flow as a limiting case of
De → 0 and gave the r.m.s. velocity deviations at De = 0.002, 0.2 to be 1.7 × 10−3

and 4.2× 10−2, respectively; the velocity deviations reported by them for the Carreau
fluids are about O(10−2) which is comparable with the values in table 3.

Figure 5 plots the streamlines of the UCM flows with De = 0, 1, 6. In the case of
inner cylinder rotation, the recirculation zone slightly shrinks at De = 1 but then
enlarges at De = 6; in the case of outer cylinder rotation, the recirculation zone
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Vi Vo Cr n r.m.s. deviation

−1 0 10 0.9 2.0× 10−2

−1 0 4 0.5 1.4× 10−1

−1 0 10 0.3 2.8× 10−1

0 1 10 0.9 1.1× 10−2

0 1 4 0.5 6.3× 10−2

0 1 10 0.3 1.1× 10−1

Table 3. R.m.s. velocity deviations of the Carreau fluids from the Newtonian flow.

decreases monotonically, and at De = 6 the asymmetric pattern about the line of
geometrical symmetry is obvious. The streamlines of the shear-thinning flows are
plotted in figure 6. As the shear-thinning effect increases, the recirculation zone in
the case of inner cylinder rotation shrinks, in agreement with the computation of
Niederkorn & Ottino (1994). As expected, the velocity field is symmetric about the
line of geometrical symmetry.

5. Results of piecewise-steady computations
5.1. Mean lineal stretching

With the procedure described in § 3.5, there are two factors that influence the accuracy
of the stretching computation: the number of time steps per period, Nt, and the
number of particle samples, N, used to model the spatial distribution of the stretching.
We have tested the cases of Nt = 6000, N = 4800 and Nt = 12 000, N = 10 800; both
of them are implemented with the analytical velocity field, and the case of Nt = 6000,
N = 4800 is implemented with the finite element velocity with the interpolation order
P2. Figure 7 demonstrates that the finite element solution is accurate enough and the
lower numbers of time steps and fluid particles can faithfully predict the geometric
mean of the spatially distributed stretching. It was noticed that if the arithmetic
mean of λ is taken over the particle samples, the data are more scattered and less
meaningful.

The fluid elasticity with the UCM model has little effect on the mean stretching.
In figure 8, our calculations show that the stretching with De = 0.2 is the same as
for the Newtonian fluid; for the case of θ = 3π/2, the stretching with De = 1.0 and
De = 6.0 is only slightly higher than for the Newtonian fluid; for the case of θ = 2π,
the stretching of the Newtonian fluid and of the UCM fluid with De = 1.0 are almost
equal while that of the UCM fluid with De = 6.0 is slightly lower. These predictions
disagree with Niederkorn & Ottino’s computation. Instead of calculating the lineal
stretching, they calculated the distance ratios of pairs of points initially separated
by a small distance and observed that the separation ratios are compatible with the
lineal stretching at early stages of the periodic flows. They predicted considerably
smaller values of the geometric mean of the separation ratios for the UCM fluid with
De 6 0.2.

Figure 9 shows that the shear thinning has a great impact on the stretching and,
for both types of boundary movement considered (θ = 3π/2 and θ = 2π), it reduces
the mean stretching. The timescales Tc defined by equation (3.24) were deduced
from a linear fitting to the data in figure 9. The effect of the shear thinning on the
stretching can be quantified by a normalized time constant, TR = Tc/Tc,Newtonian. For
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Q=0.572058 Q=0.951568

Q=0.570084 Q=0.795885

Q=0.567487 Q=0.780563

Figure 5. Streamline patterns of the Newtonian and UCM fluids; (a) the inner cylinder rotation,
(b) the outer cylinder rotation; Q is the volumetric flux.

the Carreau fluid of Cr = 4 and n = 0.5 with the boundary movement of θ = 3π/2, the
computation of Niederkorn & Ottino (1994) gave TR ≈ 1.08 while our computation
gives TR ≈ 1.36 indicating a much lower level of stretching; for the same Carreau
fluid with the boundary movement of θ = 2π, their prediction is TR ≈ 0.95 indicating
a higher level of the stretching than the Newtonian fluid, while our result is TR ≈ 1.07.

5.2. Advection of a passive tracer

Figure 10 plots the advective coverages of a passive tracer after 16 periods for
the rotation mode of θ = 3π/2 and 12 periods for the rotation mode of θ = 2π,
respectively. The tracer structures of the Newtonian flow match very well with
the experiments of Swanson & Ottino (1990) as well as with the computations of
Niederkorn & Ottino (1993) using the analytical velocity field. As the elasticity level
increases from De = 0 to De = 1.0, the tracer structure in the UCM fluid looks
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Cr = 10, n=9

Q=0.244804 Q=0.907818

Q=0.403940 Q=0.853428

Q=0.543362 Q=0.794168

Cr = 4, n=0.5

Cr = 10, n=0.3

Figure 6. Streamline patterns of the Carreau fluids; (a) the inner cylinder rotation, (b) the outer
cylinder rotation; Q is the volumetric flux.

indistinguishable from the Newtonian flow. On the contrary, the computation of
Niederkorn & Ottino (1993) predicted dramatic changes of the tracer structure in the
UCM fluid with the Deborah number as low as 0.08. The underlying cause for this
discrepancy is that the steady velocity deviations of the UCM fluid computed by us
are much smaller than theirs.

The shear-thinning property has a large impact on the advection of a passive tracer,
as depicted in figure 11. The Carreau model with Cr = 10 and n = 0.9 represents a
weak shear-thinning fluid in which a big island is formed in the middle of the large
gap for θ = 3π/2. At the medium level of shear thinning, Cr = 4 and n = 0.5, besides
the further enlarged centre island, two symmetric side-islands and a small island in the
small gap appear. For θ = 2π, the crescent-shape island present in the Newtonian and
the weak shear-thinning fluids has almost disappeared in the medium shear-thinning
fluid. At the higher level of shear thinning, Cr = 10 and n = 0.3, the chaotic region has
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Figure 7. Logarithm of the geometrical mean stretching of the Newtonian fluid; Va represents the
analytical velocity field, Vfe the finite element solution with the interpolation order P2; Nt is the
number of time steps for one period and N the number of fluid samples. (a) θ = 3π/2, (b) θ = 2π.
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Figure 8. Logarithm of the geometrical mean stretching of the Newtonian and UCM fluids; the
data of Niederkorn & Ottino represent the logarithm of the geometrical mean of the separation
ratios. (a) θ = 3π/2, (b) θ = 2π.

greatly shrunk and the tracer seems to mainly follow several manifolds. Niederkorn
& Ottino (1994) also calculated the flow for Cr = 4 and n = 0.5, and predicted no
symmetric side-islands as seen in figure 11; this may partly explain why they obtained
the stretching level considerably higher than ours for this flow.

5.3. Periodic points

First, we test the domain-search method described in § 3.6 on the Newtonian flow.
For the rotation mode of θ = 2π, we have compared the locations of the first-order
periodic points found using the method and the finite element velocity field with
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Figure 9. Logarithm of the geometrical mean stretching of the Newtonian and Carreau fluids.
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xref xfe yfe tr(J) type

2.498903 2.498902 −0.000000 −8.30 hyperbolic
2.893627 2.893628 0.000000 13.80 hyperbolic
2.367330 2.367329 0.000000 31.36 hyperbolic
5.212781 5.212781 0.000000 −2.93 hyperbolic
5.315509 5.315510 0.000007 36.34 hyperbolic
6.049988 6.049991 −0.000000 −1.48 elliptic

Table 4. Locations of the periodic points of order-1 for the Newtonian fluids and θ = 2π; these
points are located on the symmetry line so y = 0; the subscript ref indicates the results of Souvaliotis
et al. using the analytical solution and the line-searching scheme while fe indicates the results of
the finite element solution with the interpolation order P2 and the domain-searching procedure.

those given by Souvaliotis et al. (1995) using a line-search method and the analytical
velocity. The results are satisfactory: as listed in table 4, the location errors are within
O(10−6).

Due to the limitations of CPU time, we have only sought periodic points up
to the second order. Figures 12 and 13 plot the locations of the periodic points
computed by using the domain-search method and the finite element velocity fields
of the second-order discretization. These periodic points are classified as hyperbolic
or elliptic according to the eigenvalues of the Jacobian matrix of the mapping at
that point; this in turn is determined by the trace of the Jacobian, tr(J): if |tr(J)| is
greater than 2 the point is hyperbolic, if less than 2 the point is elliptic; furthermore,
for a hyperbolic point, a larger value of |tr(J)| indicates a higher stretching along
its unstable manifold; for an elliptic point, a smaller value of |tr(J)| implies a more
rotation-like mapping near that point.

We find it informative to follow the changes of the first-order periodic point A,
and the second-order periodic points B,C,D, E, indicated on figures 13 and 14, and
their traces of the Jacobian listed in table 5. For the Newtonian flow of θ = 3π/2,
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Newtonian

De=1.0

De= 6.0

h=3p/2 h=2p

h=3p/2 h=2p

h=3p/2 h=2p

Figure 10. Advection of a passive tracer in the flows of the Newtonian and UCM fluids; the
period number Np = 16 for θ = 3π/2 and Np = 12 for θ = 2π; piecewise-steady computations.

the intricate structure of the tracer folds in the large gap (see figure 10) is controlled
by the hyperbolic first-order point A, and the two elliptic second-order points, B and
C; their locations and characters have not changed noticeably at De = 1.0; however,
at De = 6.0, the two elliptic points have been shifted closer to the hyperbolic point.
Since the traces of the Jacobian approximate the critical value of −2, they are ready
to be transformed into hyperbolic points; this corresponds to the near disappearing
of the two islands in the large gap as depicted in figure 10, and to the higher mean
stretching as shown in figure 8.

For the weak shear-thinning Carreau fluid, Cr = 10 and n = 0.9, since the trace of
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Cr=4, n=0.5

h=3p/2 h=2p

h=3p/2 h=2p

h=3p/2 h=2p

Cr=10, n=0.9

Cr=10, n=0.3

Figure 11. Advection of a passive tracer in the flows of the Carreau fluid; the period number
Np = 16 for θ = 3π/2 and Np = 12 for θ = 2π; piecewise-steady computations.

θ = 3π/2 A(1) B(2) C(2) D(2) E(2)

Newtonian −2.12 −1.39 −1.39 −5.57 −5.51
De = 1.0 −2.16 −1.74 −1.74 −5.70 −5.70
De = 6.0 −2.43 −1.99 −1.99 −5.79 −5.79
Cr = 10, n = 0.9 −2.01 0.63 0.64 −4.45 −4.40
Cr = 4, n = 0.5 −1.38 ∗ ∗ ∗∗ ∗ ∗ ∗∗ −1.30 −1.28
Cr = 10, n = 0.3 −0.10 ∗ ∗ ∗∗ ∗ ∗ ∗∗ 0.68 0.64

Table 5. Trace of the Jacobian, tr(J), of the periodic points in figures 13 and 14 where the number
in brackets indicates the period order; the mode of boundary rotation is θ = 3π/2.
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Figure 12. Locations of the periodic points for the Newtonian and UCM fluids; circle for the
elliptic point, square for the hyperbolic point, filled for the period order 1 and open for the period
order 2.

the Jacobian approximates the critical value, the point A is ready to be transformed
into an elliptic point; meanwhile the elliptic character of points B and C is consider-
ably stronger than that of the Newtonian flow; this corresponds to the large island
in figure 11. For the medium shear thinning, Cr = 4 and n = 0.5, points A, B and
C have collapsed into a single elliptic first-order periodic point; this corresponds to
the further enlarged centre island in figure 11; moreover, the two original hyperbolic
points, D and E, have been transformed into two elliptic points, resulting in two
symmetric side-islands as plotted in figure 11; the presence of these islands gives rise
to the considerably lower level of the mean stretching as shown in figure 9.

The elliptic first-order periodic point P in figure 12 is just located in the small
island of the flow with De = 6.0 and θ = 2π as shown in figure 10. For the flow with
Cr = 4 and n = 0.5 and θ = 3π/2, the elliptic first-order periodic point F in figure 13
is located at the centre of the island in the small gap as shown in figure 11. Finally,
the elliptic first-order periodic point Q in figure 13 ought to be responsible for the
large island in the flow of Cr = 10 and n = 0.3 and θ = 2π as shown in figure 11.

6. Results of unsteady computations
As the fluid elasticity increases the transient process caused by the stress relaxation

due to the rotation switches between the two cylinders should become more and
more significant. Therefore it is reasonable to carry out a fully unsteady computation
to examine the influence of the transient process on the advective mixing of the
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Figure 13. Locations of the periodic points for the Carreau fluid; circle for the elliptic point,
square for the hyperbolic point, filled for the period order 1 and open for the period order 2.

h=3p/2 h=2p

Figure 14. Advection of a passive tracer in the flows of the Oldroyd-B fluid with De = 1.0; the
period number Np = 16 for θ = 3π/2 and Np = 12 for θ = 2π; unsteady computations.

viscoelastic flow, i.e. to check the piecewise-steady approximation. Due to the limi-
tation of our unsteady algorithm, we have only carried out the simulations for the
Oldroyd-B fluid, with a relative Newtonian viscosity of β = 0.1. With this small value
of β, differences of the velocity fields between the Oldroyd-B and UCM fluids are
expected to be insignificant. Actually, at De = 0.2, we found that the r.m.s. velocity
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Figure 15. Logarithm of the geometrical mean stretching of the Oldroyd-B fluid with De = 1.0;
comparison of the piecewise-steady and unsteady calculations. (a) θ = 3π/2, (b) θ = 2π.

differences between the Oldroyd-B and the UCM fluids are 2.3× 10−5 and 6.8× 10−5

for the inner and outer cylinder rotations, respectively. At De = 1.0, the corresponding
r.m.s. differences are 4.1× 10−4 and 1.5× 10−3.

In order to quantify the transient degree of the unsteady flow caused by sudden
switches of the cylinder rotations, let us assume that if a variable’s time rate of change
(absolute value) is less than 0.001, it enters into a steady state. Thus, in a period of
the flow, the unsteady calculation finishes when the maximum time rate of change of
all variables is less than 0.001. Further we define the time fraction of the stress and
time fraction of the velocity as

εs =
Ts

T
, εv =

Tv

T
,

where Ts is the maximum time period among all the stress components (including the
pressure) required to reach the steady state and Tv is the corresponding time period
for the velocity components, and T is the time period for the outer cylinder to rotate
2π. In a typical test, the flow was started from rest by a sudden step of rotation of
the outer or inner cylinder; the unsteady computation for the Oldroyd-B fluid with
De = 0.2 gave rise to εs ≈ 13% and εv ≈ 4%, while the corresponding estimations for
the unsteady flow with De = 1.0 are εs ≈ 69% and εv ≈ 27%. Hence the transient
degree of the velocity field is much less than the stress field.

Even with the improvements described in § 3.3, the unsteady algorithm is still
excessively time consuming and a higher Deborah number demands a smaller time
step to achieve computational stability. We have only calculated the cases De =
0.2 and De = 1.0. Quite unexpectedly, the advection of the passive tracer shows
no significant changes in these unsteady viscoelastic computations. In figure 14
the tracer structures have no distinguishable character that is different from their
counterparts in the piecewise-steady computations. We also found that the transient
process has little effect on the geometric mean stretching. In figure 15 the stretching
obtained from the unsteady computations for De = 1.0 closely follows the results of
the corresponding piecewise-steady computations with only small oscillations. This
behaviour can be explained by the following. Since the fluid inertia is neglected, the
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velocity is determined only by the instantaneous state of the stress, i.e. at each time
step the velocity field is quasi-steady. However, the elastic stress of the UCM fluid
has relatively little effect on the velocity in steady flow, as indicated by our earlier
computations.

7. Discussion
Niederkorn & Ottino’s (1993) experiment with Boger fluids (elastic fluids with a

constant viscosity) demonstrated that low elasticity (De 6 0.2) considerably affects the
asymptotic coverage of a dyed passive tracer. On the contrary, our computation for
the UCM fluid shows that, up to De = 1.0, the advected coverage of a passive tracer
is nearly indistinguishable from the Newtonian flow (using the Oldroyd-B model did
not change the results). Upon inspection of the viscometric data of the fluids used by
them, two possible reasons may be responsible for the disagreement. First, the first
normal stress coefficient of their Boger fluids shows a strong shear-thinning behaviour
while the UCM model predicts a constant first normal stress coefficient. Secondly,
according to the data they presented, the viscometric tests were carried out only for
the shear rate larger than 0.6 s−1 while they estimated that the actual shear rate in
the mixing experiment was from 0.06 to 0.37 s−1. In this range of small shear rates,
the rheological properties of the Boger fluids have not been measured with certainty,
and the possibility of shear-rate dependence cannot be excluded. It is well known
that at small Deborah numbers, the UCM model is equivalent to the second-order
fluid whose constitutive equation is

τ = γ̇ − Deγ̇(1),

where γ̇ is the strain rate, γ̇ = ∇u+ ∇uT , and γ̇(1) is the upper-convected derivative
of γ̇. The Tanner & Pipkin theorem (Bird et al. 1987; Tanner 1992; Huilgol & Phan-
Thien 1997) states that the velocity field of a creeping plane flow of incompressible
Newtonian fluids satisfies the equations for the flow of second-order fluid. We have
carried out the computation for second-order fluid in the flow between eccentric
cylinders, in which γ̇ is treated as an additional independent variable and interpolated
with the same order of polynomials as the velocity variable. The r.m.s. deviation of
the velocity from the Newtonian analytical solution is 8.2 × 10−6 at De = 0.2 and
3.7× 10−5 at De = 1.0, respectively. Next, we examine the influence of shear-thinning
first normal stress by introducing a strain-rate-dependent Deborah number in the
form similar to the Carreau model:

De = De0[1 + (Crγ̇)
2](n−1)/2,

where γ̇ =
√

( 1
2
)II and II is the second invariant of the strain rate γ̇. Based on the

viscometric data in the paper of Niederkorn & Ottino (1993) we chose the parameters
Cr = 10 and n = 0.4, 0.2. We carried out the computation for the modified second-
order fluid with De0 = 0.2 and found that the r.m.s. deviations of the velocity from the
Newtonian flow are at the same level as the UCM fluid with De = 0.2 listed in table 2,
and the advection coverage of the passive tracer has no distinguishable difference
from the Newtonian flow. To examine the effect of shear-thinning first normal stress
at higher elasticity levels, the modified UCM model (MUCM) proposed by Apelian,
Armstrong & Brown (1988) may be appropriate:

τ +
De

1 + (F tr (τ ))α
τ (1) = (∇u+ ∇uT ),
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where tr(τ ) is the trace of the extra-stress tensor τ , and F and α are two parameters.
The MUCM model predicts a constant viscosity and a shear-thinning first normal
stress difference which are controlled by F and α. We have computed the MUCM
flow at De = 1.0 with the parameters α = 4.0, F = 0.1, 0.2. The shear thinning of the
first normal stress coefficient is significant; however, the major coverage structure of
the advected passive tracer has not changed from the corresponding UCM flow. In
summary, all our numerical tests seem to indicate that the dramatic changes of the
tracer-advection pattern in Niederkorn & Ottino’s experiment with the Boger fluids
are probably caused by the non-constant viscosity instead of the fluid elasticity. In fact,
if one inspects the tracer-coverage patterns in their experimental photographs and
those of the weakly shear-thinning flow in figure 11, as well as those of the Carreau
fluids computed by Niederkorn & Ottino (1994), one sees that some of them are quali-
tatively matched. However, the final decisive answer to whether small elasticity of the
fluid has a large effect on the advective mixing of the flow between eccentric cylinders
can only come from an experiment with more accurate rheological measurements.

Niederkorn & Ottino (1993) reported astonishingly good matches of the tracer-
coverage structure between their experiment and computation using the UCM model.
Generally, the Boger fluids are still very complex fluids and, to date, quantitative pre-
dictions for them in complex flows have not been achieved by numerical simulations
using a constitutive equation with a single relaxation time. In their computations, the
split-coefficient matrix (SCM) algorithm, originally developed for compressible gas
flows, was employed to solve the field equations and, to make the set of governing
equations hyperbolic, a small compressibility term in the continuity equation had to
be introduced. The key point is the discretization error of the velocity field. They
reported the r.m.s. error of 1.7 × 10−3 for the Newtonian flow with respect to the
analytical solution and the r.m.s. velocity deviation of 4.2 × 10−2 for the UCM fluid
with De = 0.2, while our corresponding computations are 3.7× 10−7 and 2.2 × 10−4,
respectively. Therefore, it is very likely that the discretization errors in their computa-
tions have overwhelmed the physical velocity deviations of the viscoelastic flow from
the Newtonian flow.

Obviously, a closely related problem is the magnitude of the velocity correction of
the UCM fluid compared to that of the Newtonian fluid at a relatively low elasticity
level, say De = 0.2. In this respect we wish to make a comment on the work of Kumar
& Homsy (1996) on the chaotic advection of UCM fluid between slowly modulated
eccentric cylinders. In order to determine the viscoelastic correction to the Newtonian
flow field, they employed a semi-analytical method in which the velocity, pressure
and stress are first expanded in powers of the Weissenberg number (equivalent to
our definition of De); these expansions are then substituted into the field equations,
truncated up to the terms of D2

e . After some manipulations, they obtain the second-
order correction equation of the stream function (the first-order correction is zero)
and solve the equation by a finite difference technique. However, the range of validity,
in terms of De, of their perturbation solutions is rather limited, even at a low value
of De = 0.2. An implicit assumption in all perturbation methods is that the truncated
terms are not significant relative to the terms which are kept.

In the perturbation solution presented in Kumar & Homsy (1996) for the case
of Ω2/ Ω1 = −20 and e = 0.45, where Ω2/ Ω1 is the angular-velocity ratio of
the inner and outer cylinders and e the eccentricity, the coefficient of the second-
order correction for the volumetric flux is as high as 600 while the zeroth-order,
Newtonian volumetric flux is 0.9; thus the second-order correction of De = 0.2 for
the volumetric flux is 24, which is too large compared to the Newtonian volumetric
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flux. We believe higher-order corrections need to be considered. In the analyses of the
chaotic advection, they use the small eccentricity, e = 0.1, which has much smaller
second-order corrections. But even in this case De = 0.2 and when Ω2/ Ω1 = −10,
the coefficient of the second-order correction is 7.3 (from their figure 5) while the
corresponding Newtonian flux is about 0.4. Hence the second-order correction of the
velocity at De = 0.2 is still relatively large compared with the Newtonian velocity
field. Although Kumar & Homsy’s work is valuable for understanding the mechanism
of how viscoelasticity influences the advective mixing between eccentric cylinders, we
believe that their perturbation solution can only apply at extremely small Deborah
numbers.

8. Conclusions
We have studied numerically the viscoelastic effects on the chaotic mixing between

alternately rotating eccentric cylinders. For the viscoelastic fluid modelled by the UCM
constitutive equation, with the elasticity levels up to De = 1.0, our computations
predict no noticeable changes of the mixing pattern of a passive tracer from the
Newtonian flow. The stretching of the fluid elements, quantified by the geometrical
mean of the spatial distribution, remains exponential up to De = 6.0, with only slight
changes from the Newtonian flow. On the other hand, shear-thinning viscosity has a
large impact on both the advection of a passive tracer and the mean stretching of
the fluid elements. We have examined the influence of the shear-thinning first normal
stress difference and discussed the causes for the discrepancy between our computation
and Niederkorn & Ottino’s experiment; the discussion leads to questioning whether
small elasticity of the fluid has a large effect on the chaotic mixing in this periodic
flow. The comparison between our computations and Niederkorn & Ottino’s reveals
the importance of reducing the discretization error in the computation of chaotic
mixing.

In order to check the validity of the piecewise-steady assumption, an unsteady
algorithm for creeping, viscoelastic flows has been developed and used to study the
transient process of an Oldroyd-B fluid in this time-periodic flow. We have found that
the transient period of the velocity is much shorter than the transient period of the
elastic stress, and, up to De = 1.0, the advection of a passive tracer obtained with the
piecewise-steady computation is almost unaffected by the unsteady computation, and
the mean stretching computed by the unsteady method closely follows that computed
by the piecewise-steady method with small oscillations. These behaviours can be
attributed to the quasi-steady nature of the velocity field in creeping unsteady flows
and to the relatively small effect of the elastic stress on the velocity in the steady flow
between eccentric cylinders.

The characteristics of advective mixing produced by a time-periodic flow are
controlled by the location and character of the periodic points. In the viscoelastic flows
between eccentric cylinders, the distribution of the periodic points is not symmetric,
hence we have developed a domain-search algorithm based on Newton iteration for
locating the period points. Our computations have demonstrated that this algorithm
is accurate and reasonably efficient. It is also satisfactory to have observed that the
periodic points, found up to the second order, and their eigenvalues are indeed very
informative in indicating the occurrence and location of islands (regular regions)
among the chaotic region and in faithfully predicting the qualitative changes of the
mean stretching of the fluid elements in this chaotic mixing flow.
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